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Abstract – This paper investigates the 
principles of instrument interchangeability in 
Automatic Test Systems by identifying the 
effects of instrument replacement and by 
analyzing the existing solutions for interchan-
geability problems. The “robust” instrument 
interchangeability provided by the IVI-MSS 
approach is presented in detail. The solution 
proposed in the paper consists of the 
standardization of a Signal Interface as 
semantic contents for IVI-MSS interfaces. 
Besides the inherent advantages of the IVI-
MSS architecture, this approach provides 
portability of components among different 
testing environments. The functional 
requirements, integration issues and 
associated business model for the proposed 
solution are analyzed. 

Introduction 

In the present paper, “instrument interchan-
geability” is understood as the ability to replace a 
given instrument with an alternative instrument of 
sufficient capability, but of a different model, class, 
design or manufacturer.  

Instrument interchangeability is a critical supporta-
bility issue in application fields such as avionics, 
nuclear power plants, transportation and weapon 
systems, where the Units Under Test (UUTs) and 
their associated Test Program Sets (TPSs) have 
operational lifetimes covering several generations 
of test instrumentation. As the inventory of 
existing Automatic Test Systems (ATSs) ages, 
without the prospect of many newer systems 
becoming operational soon, maintenance 
organizations face the issue of ATSs approaching 
obsolescence. Typically, three solutions are 
considered: 

1. Total replacement with new Commercial Off 
The Shelf (COTS) ATSs, requiring the 
redevelopment of all test programs and their 
associated documentation. 

2. Updating the existing ATS's computer and 
instruments and re-hosting the legacy TPSs to 
run on the new computer's operating system 
and with the new instruments. 

3. Migrating existing TPSs to newer ATE 
systems with the same or greater capabilities, 



thus reducing the multiplicity of ATSs in the 
organization. 

The development of new TPSs represents a large 
investment, the cost of a complete TPS (with 
interfacing devices and documentation) ranging 
typically from $80,000 to $250,000.  

The re-hosting of legacy TPSs in order to support 
new instruments is also very expensive and 
sometimes logistically impossible, due to the lack 
of UUT data, software development support or 
programming expertise for the original 
development language. Moreover, TPS changes 
require a new Independent Validation and 
Verification (IV&V) process, which is expensive 
and time consuming [10]. 

Consequently, the replacement of instruments 
must be possible without changing the TPSs, 
while the test results are guaranteed to remain 
identical. In the following, this feature will be 
called “robust interchangeability” [9]. 

Principles of Instrument 
Interchangeability 

ATS Architecture 

The following analysis of interchangeability 
principles is based on a generic Automatic Test 
System (ATS) architecture, derived from the 
Automatic Test Systems Subdomain Annex of the 
DoD Joint Technical Architecture (JTA) [3] (Figure 
1). The Resource Adapter Interface component 
defined in [3] was omitted from the picture 
because it is not supported by standards currently 
in use. The functional requirements assigned to 
this component by the JTA will be analyzed in the 
next sections of the paper. 

Instrument-based TPSs perform the direct control 
of instruments through the following methods: 

1. Sending string commands through the Bus 
Driver or the Instrument Communication 
Manager (I/O Library). 

2. Calling functions of Instrument Drivers. 
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Figure 1. Generic ATS Architecture



For signal-based TPSs, the control of instruments 
is performed by the Run-Time Services of the 
ATS, also using one of the above methods. 

Effects of Instrument Replacement 

As visible in the generic ATS architecture, the 
replacement of an instrument (along with its 
driver, if applicable) may involve changes at the 
following interfaces of the ATS architecture: 

1. Software interfaces between Test Procedures 
and the Bus Drivers:  

1.1. The new instrument uses a different 
control method (string commands vs. 
driver calls). 

1.2. Both instruments are controlled through 
drivers, but the new driver provides 
different functions, because the new 
instrument is of a different model or 
belongs to a different class. 

1.3. Both instruments are controlled through 
string commands, but the new instrument 
has a different command set, because it 
is of a different model or belongs to a 
different class. 

2. Hardware interfaces between the Bus Driver 
and the Instrument; the new instrument uses 
a different Instrument Control Bus. 

3. Electrical interfaces between the Instrument 
and the UUT; the new instrument has 
differently organized ports (e.g. a different 
number of outputs). 

The above problems become more complex when 
multiple instruments are involved in the 
replacement (for instance, when several 
instruments are replaced by a unique new 
instrument). 

An additional interchangeability problem, often 
overlooked, is the behavior of the instrument (or 
the instrument-driver subsystem, if applicable). 
The following situations are identified: 

1. The new instrument provides a different 
answer, which may consist of different 
physical signals generated in response to the 
same commands or driver calls, or different 
measurement results for identical physical 

signals. This may be due to range, resolution 
or precision differences that are not properly 
taken into account when planning the 
replacement, or to more subtle causes such 
as different methods and algorithms 
implemented in drivers or the instrument 
firmware [9]. 

2. The new instrument has a different state 
behavior. The “state” of an instrument is 
characterized by a set of attributes (settings) 
such as ranges, operational modes, etc. For 
different instruments, the state may have 
different evolutions in response to identical 
sequences of commands or driver calls, 
starting from the Reset or Power-on state. For 
example, the attributes may have different 
values after Reset or Power-on. Calling a 
function or changing an attribute may affect 
the other attributes differently, for different 
instruments. 

In addition, the replacement of an instrument may 
require a new calibration of the signal paths that 
include the instrument and its connection cables. 

Existing Solutions for the 
Interchangeability Problems 

The interchangeability problems described before 
are addressed by several families of standards 
developed over the years. The benefits and 
limitations of these standards will be summarized 
in the following. 

IEEE-488 

IEEE-488 is an Instrument Control Bus standard, 
primarily addressing the hardware interface 
between the Bus Driver and the Instrument. The 
IEEE-488.2 standard addresses the software 
interface between Test Procedures and Bus 
Drivers for command-based instruments, by 
specifying a small set of common commands and 
protocols. This level of standardization insures 
consistency in usage, but does not provide a 
common semantic for instrument control (i.e., 
identical commands for the same functions). In 
consequence, although TPS changes are always 
required when instruments are replaced, this 
operation is simplified to some extent. 



SCPI 

The Standard Commands for Programmable 
Instrumentation (SCPI) standard addresses the 
software interface between Test Procedures and 
Bus Drivers for command-based instruments, by 
specifying common sets of commands for diverse 
classes of instruments. The level of 
interchangeability provided by SCPI is limited by 
the need of instrument vendors to extend the 
command set in order to expose instrument-
specific functionality [9]. This means that any use 
of instrument-specific functionality may require 
TPS changes when the instrument is replaced, 
thus compromising the interchangeability. 
Additionally, SCPI does not support 
interchangeability solutions involving multiple 
instruments. 

VXIplug&play 

The VXIplug&play standard addresses the 
software interface between Test Procedures and 
Bus Drivers for driver-based instrument control by 
specifying a small set of common functions in the 
driver’s Application Programming Interface (API). 
Similar to IEEE-488.2, this offers consistency in 
usage but does not provide common semantics. 

IVI Drivers 

The IVI Foundation [7] is currently developing a 
set of Class Driver standards. These standards 
address the software interface between Test 
Procedures and Bus Drivers for driver-based 
instrument control by specifying common driver 
APIs for diverse classes of instruments. The 
interoperability of IVI Drivers from different 
vendors is supported by a standardized 
architecture and set of standardized IVI Common 
Components. IVI Drivers will be available with 
COM interfaces. 

The interchangeability provided by IVI Class 
Drivers is limited by the following factors: 

1. The class standards deal with the inherent 
differences in instrument capabilities by 
defining “extension groups”, which support the 
capabilities provided by a limited, but 
significant, number of existing instrument 
models. This approach is expected to cover 
about 80% of the existing instrument models. 
Consequently, the access to instrument-spe-
cific functionality still requires vendor-specific 

extensions to driver APIs, in the form of 
“specific driver interfaces”. The direct use of 
instrument-specific functions in the TPS 
code compromises interchangeability. 

2. The attribute model defined by the class 
standards does not cover the interaction of 
attributes and the effects of function calls on 
these attributes. Consequently, the 
interchangeability may be compromised by 
differences in instrument state behavior. 

3. The class standards do not address the 
problem of different answer, as previously 
defined in the paper. 

4. Because the standardized interfaces are 
instrument-class specific, the class standards 
do not support replacement with instruments 
from a different class and multi-instrument 
replacement solutions. 

In conclusion, although an important step forward 
in providing interchangeability for driver-controlled 
instruments, the IVI Class Driver standards do not 
provide “robust” interchangeability, as defined in 
the Introduction of the present paper. When 
instruments are replaced, the use of IVI Class 
Driver guarantees (with some limitations) the 
execution of TPSs, but does not guarantee 
identical test results. 

Role of IVI-MSS in Providing 
Instrument Interchangeability  

The IVI-MSS (Measurement and Stimulus 
Subsystem) standard is based on the 
“Measurement Subsystem Architecture” 
developed by the Hewlett-Packard Company [8]. 
This architecture design was offered to the 
industry [1] and later included under the 
sponsorship of the IVI Foundation [9]. This has 
opened the way for unification of concepts and 
architecture, extending the range of 
interchangeability solutions offered by the IVI 
Foundation. 

Objectives 

The IVI-MSS standard addresses most of the 
interchangeability problems outlined before, 
according to the following objectives [9]: 

1. Allow replacement with instruments from a 
different class. 



2. Support interchangeable multi-instrument 
measurement and stimulus solutions. 

3. Provide a place for instrument-specific code 
that compensates for instrument peculiarities 
that produce different answers. 

4. Promote a business model that requires the 
vendor to guarantee the same answer when 
an instrument is replaced. 

5. Support software reuse for complex 
measurement and stimulus solutions. 

Architecture  

While interchangeability problems involving 
interface incompatibilities may be solved by 
standardizing the syntax and semantics of these 
interfaces, the problems caused by differences in 

instrument behavior require an architectural 
solution. 

The IVI-MSS standard defines an architecture 
with additional layers of COM components 
between the TPS and the instruments (Figure 2).  

The Role Control Modules (RCMs) are 
instrument-specific components that provide a 
place for code that compensates for differences in 
instrument behavior. The interfaces of these 
components implement an IVI-MSS “role”, which 
means they have rigid semantics and are “owned” 
by the client (e.g., the developer of the 
Aggregation Component).  

The Measurement and Stimulus Subsystems 
(MSSs) are components that interact with more 
than one RCM to implement multi-instrument 
measurement and stimulus solutions. They may 
also expose “role” interfaces. 
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Figure 2. IVI-MSS Architecture 



All IVI-MSS Components, as well as the IVI 
Drivers, use the services of IVI Common 
Components:  

1. The IVI Factory, which instantiates the 
components. 

2. The IVI Config Store, which provides access 
to configuration information defining the 
hierarchy of components. 

3. The IVI Event server, which allows 
components to communicate through events. 

The above architecture supports complex ATS 
implementations, potentially combining IVI-MSS 
components, IVI Class Drivers, VXIplug&play 
drivers and direct instrument control [9]. It also 
supports signal-based ATS architectures, as 
described in the following. 

Interface Ownership 

As specified above, “role” interfaces are “owned” 
by the client. This means that the organization 
developing Test Procedures or Measurement and 
Stimulus Subsystems using RCMs specifies the 
contents and the semantics of RCM interfaces. 
RCM developers are responsible for implementing 
and guaranteeing the specified behavior.  

Because “role” interfaces are not required to 
expose all the functionality of the instrument, they 
are less complex than the interfaces of IVI 
Drivers. This simplifies specification and 
verification of functionality, reducing the cost of 
initial development and the costs incurred by 
subsequent instrument replacement operations 
[9]. 

In conclusion, IVI-MSS provides robust instrument 
interchangeability by defining an architecture and 
specifying ownership rules for the semantic 
interfaces. The specification of semantic contents 
for these interfaces is outside the scope of IVI-
MSS. The reuse of IVI-MSS Components from 
different solution providers among different test 
environments requires the standardization of 
interface semantics. Such standards may be 

application domain-specific, for instance 
dedicated to RF measurement. A domain-
independent solution based on the signal-based 
testing paradigm is proposed in the following. 

Role of Signal-Based Testing in 
Providing Instrument 
Interchangeability 

The Signal-Based Testing Paradigm 

Within the current test software technology, test 
procedures may be developed using one of the 
following approaches (“testing paradigms”): 

1. Instrument-based testing.  Test procedures 
specify the behavior of instruments through 
instrument-specific control methods such as 
string commands or driver calls. The 
connection of instrument ports to the UUT 
pins is controlled by specifying in the test 
procedures the behavior of the Switching 
Matrix, through device-specific control 
methods. 

2. Signal-based testing. Test procedures 
specify the desired behavior to be obtained at 
the pins of the UUT, in terms of signals to be 
applied and measured. The selection of 
appropriate instruments may be performed 
automatically by the development 
environment and/or the run-time environment, 
through automatic resource allocation. The 
behavior of the Switching Matrix is determined 
automatically by the development 
environment and/or the run-time environment, 
through automatic switching.  

Two code samples included below illustrate the 
implementation of the same signal generation 
operation using both testing paradigms. The 
generated signal is sinusoidal, with 1V amplitude 
and 100kHz frequency, and must be applied at 

the UUT pins labeled J1-1 and J1-2. The ATS 

hardware (Figure 3) consists of a function 
generator, the Switching Matrix and the Receiver 
(R), while the TPS includes Test Procedures and 
the Fixture (F). 
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Figure 3. Example of ATS Hardware 

The following code fragment is extracted from an 
instrument-based test procedure that controls the 
function generator and the switch through IVI 
Drivers: 

IviFgen_init(“GPIB:22:INSTR”,   

  VI_TRUE, VI_TRUE, &viFgen1); 

IviFgen_ConfigureStandardWaveform(   

  viFgen1, “CH1”,  

  IVIFGEN_VAL_WFM_SINE,  

  1, 0, 100E3, 0) 

 

IviSwtch_init(“GPIB:17:INSTR”,   

  VI_TRUE, VI_TRUE, &viSwtch1); 

IviSwtch_Connect(viSwtch1,  

  “IX-HI”, “P10”) 

IviSwtch_Connect(viSwtch1,  

  “IX-LO”, “P11”) 

 

IviFgen_InitiateGeneration(viFgen1) 

IviFgen_EnableOutput(viFgen1) 

 

It may be observed that the above code contains 
references to the instrument’s I/O address, to an 
instrument channel and to instrument ports. The 
driver calls are instrument-class specific and the 
function 
IviFgen_ConfigureStandardWaveform() 

belongs to an extension group of the “IVI function 
generator” class. All the above elements limit 
interchangeability. 

The following ATLAS code implements equivalent 
functionality in a signal-based test procedure: 

REQUIRE, 'AC_SIG_GEN',  

  SOURCE, AC SIGNAL, 

  CONTROL,  

    VOLTAGE RANGE 0V TO 2V BY 1MV, 

    FREQ RANGE 10HZ TO 1MHZ  

      ERRLMT +-0.1PC, 

  CNX HI J1-1 LO J1-2 $ 

 

APPLY, AC SIGNAL  

  USING 'AC_SIG_GEN', 

  VOLTAGE 1.0V, 

  FREQ 100.0KHZ, 

  CNX HI J1-1 LO J1-2 $ 

 

The first statement describes the requirements for 
a signal, indicating the following: 

1. signal role (SOURCE) 

2. signal type (AC SIGNAL) 

3. minimum range, resolution (BY keyword) and 

precision (ERRLMT keyword) for signal 

parameters Voltage and Frequency 

The second statement specifies a signal 
generation operation, indicating the values of 

signal parameters and the UUT pins (J1-1, J1-1) 

where the signal ports (HI, LO) must be applied. 

To support signal allocation and automatic 
switching, signal-based ATSs must contain 
information about the capabilities and the 
connectivity of Instruments, Switching Matrix and 
Fixture (Figure 1). This information is typically 
provided in text files, using a description 
language. The standardization of this language is 
addressed by the IEEE Standard for Test 
Equipment Description Language (TEDL) [5].  

For example, an ATS including an instrument that 
may be allocated to the signal from the above 
ATLAS code may contain the description 
presented in the following, expressed in a 
TEDL-like language.  



The instrument description shown below 
specifies the following: signal role and signal type; 
signal capabilities, in terms of range, resolution 
and precision for signal parameters; signal 

connectivity, in terms of instrument ports (IX_HI, 

IX_LO) where the signal ports (HI, LO) are 

applied. 

DEVICE_MODEL InstrX 

  FUNCTION SOURCE 

  NOUN AC_SIGNAL 

    SIG_CHAR 

      VOLTAGE RANGE 0V TO 5V  

        BY 0.1MV 

      FREQ RANGE 1HZ TO 10MHZ  

        ERRLMT +-0.05PC 

    AT HI IX_HI LO IX_LO  

END DEVICE_MODEL InstrX $ 

The simplified Switching Matrix description 
presented below specifies the signal paths that 
may be closed by the Switching Matrix between 
the instrument ports and the pins of the Receiver-

Fixture interface (P120, P11). 

SWITCH_MODEL SwitchX 

  PATH p1 CONNECTS IX_HI TO P10 $ 

  PATH p2 CONNECTS IX_LO TO P11 $ 

END SWITCH_MODEL SwitchX 

The simplified Fixture description presented 
below specifies a set of hardwired connections 
between the pins of the Receiver-Fixture interface 

and the pins of the UUT (J1-1, J1-2). 

ADAPTATION_MODEL Ita1 

  UUT Uut1 

  PATH p1 CONNECTS P10 TO J1-1 $ 

  PATH p2 CONNECTS P11 TO J1-2 $ 

END ADAPTATION_MODEL Ita1 

The capabilities of the instrument InstrX satisfy 

the requirements specified in the ATLAS code 
from the previous example. Moreover, the 
Switching Matrix is able to provide all the required 
signal paths between signal ports and UUT pins. 
Consequently, this instrument may be allocated to 
the ATLAS signal. 

Because they do not specify instrument control 
operations and do not contain references to 
instrument ports, signal-based test procedures are 
inherently instrument-independent. The following 
specific interchangeability benefits may be 
identified: 

1. Because test procedures do not specify 
instrument control operations, changes in 
software interfaces between the Test 
Procedures and the Bus Drivers and in the 
hardware interface between the Bus Driver 
and the Instrument do not impact TPS 
operation (Figure 1). When instruments are 
replaced, the signal-based test development 
and execution environment is able to 
compensate for differences in the above 
interfaces. 

2. Because test procedures do not contain 
references to instrument ports, changes in the 
electrical interfaces between Instruments 
and the UUT (Figure 1) do not impact TPS 
operation. Connectivity differences in the 
above interfaces are compensated by 
automatic switching. Moreover, automated 
switching enables the automatic calibration 
of signal paths, if adequate capability 
information is provided for the Switching 
Matrix and the Fixture. 

3. The differences in instrument behavior that 
may be expressed in terms of range, 
resolution and precision capabilities are 
automatically taken into account by automatic 
resource allocation. Only instruments that 
satisfy the requirements expressed in the test 
procedure code are used at run-time. 

Instrument Control in Signal-Based ATSs 

Currently the signal-based testing paradigm is 
available through the ATLAS language [6]. 
Originally developed as a language for specifying 
test requirements for human readers, ATLAS has 
evolved into a programming language.  Because 
the ATLAS standard does not specify how the 
actual control of instruments is implemented, 
vendor-specific solutions were developed. Due to 
the limitations of some of these solutions, existing 
ATLAS TPSs often contain instrument control 
operations, implemented by Non-Atlas Modules 
(NAMs). This approach compromises the 
instrument independence provided by the 
language. 

To avoid the above problem, signal-based ATSs 
must include code modules (called in the following 
“signal drivers”) that implement the control of 
instruments through string command or driver 
calls. The “signal drivers” are instrument-specific, 
being replaced along with the instrument. To 



support the flexible allocation of instruments to 
signals, the “signal drivers” must have software 
interfaces that are both instrument 
model-independent and instrument-class 
independent. This is achieved by implementing 
the basic signal operations corresponding to 
ATLAS single-action verbs, as exemplified below: 

1. For the “source” and “load” signal roles: 

Connect, Setup, Change, Close, 

EnableEvent, DisableEvent, Open, 

Reset, Disconnect. 

2. For the “sensor” signal role: Setup, 

Connect, Change, Arm, EnableEvent, 

DisableEvent, Fetch, Disconnect, 

Reset. 

Some of the above considerations also apply for 
the control of the Switching Matrix, which should 
be implemented by device-specific “switching 
drivers”. The standardization of an interface for 
“switching drivers” is outside the scope of the 
present paper. 

Architecture of Signal-Based ATSs 

Signal-based ATS architectures (Figure 4) 
including the code modules introduced above are 
currently implemented in ATLAS products such as 
TYX PAWS. Similar architectures based on 
general-purpose programming languages were 
prototyped by the DoD joint service Automatic 
Test Systems Research & Development 
Integrated Product Team (ARI) [2] and TYX [10].  

Figure 4. Signal-based ATS Architecture 

The IVI-MSS Signal Interface 

The lack of standardization for the interfaces of 
“signal drivers” supported by vendor-specific 
solutions limits their interoperability and their 
portability among different testing environments. 

The signal-based ATS architecture shown in Figure 
4 is perfectly compatible with the IVI-MSS 
architecture represented in Figure 2, if the “signal 
drivers” are implemented as IVI-MSS Role 
Components. Moreover, the use of IVI-MSS 
Aggregation Components with a “role” interface 
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may support multi-instrument signal measure-
ment and generation solutions. 

Consequently, the standardization of a Signal 
Interface for IVI-MSS Components allows the 
development of ATSs that combine the benefits 
of the IVI-MSS architecture and those provided 
by the signal-based testing paradigm. This 
combination is able to address all the effects of 
instrument replacement previously identified in 
the paper.  

The IVI Foundation sponsors this approach 
through a Signal Interface Working Group, with 
the mission of “defining a standard specification 
for IVI-MSS component interface semantics in 
support of the signal-oriented description of 
measurement and stimulus operations”.  

As indicated before for IVI-MSS “role” interfaces, 
the simplicity of the Signal Interface (i.e., the 
low number of methods) simplifies performance 
verification, reducing development and 
maintenance costs. On the other hand, the 
generality of the interface (i.e., 
instrument-independence and application 
domain-independence) favors the reuse and 
portability of components among test 
environments from different vendors. The 
simplicity and the generality do not compromise 
the capability of the interface, understood as its 
ability to satisfy functional requirements for 
different types of testing (e.g., analog, digital, 
bus testing) and different types of UUTs (e.g., 
RF, opto-electronic, electro-mechanical, etc.), in 
test systems with different levels of complexity. 
The above capability was demonstrated over the 
years by the use of “signal drivers” in 
vendor-specific ATS architectures integrated in a 
large number of applications.  

The unique combination of benefits enumerated 
before derives from the use of the signal 
abstraction, which is a very powerful and generic 
way of specifying behavior in test systems. 

Functional Requirements for the IVI-
MSS Signal Interface  

This section presents the functional 
requirements currently identified for the Signal 
Interface design. 

General Requirements 

Signal Interfaces may be defined for IVI-MSS Role 
Control Modules or, in the case of multi-instrument 
solutions, for IVI-MSS Measurement and Stimulus 
Subsystems. In the following, the IVI-MSS 
Components with a Signal Interface will be called 
“Signal Components”. 

The Signal Interface standard must provide 
“robust” instrument interchangeability by: 

1. Defining an instrument model-independent and 
instrument-class independent interface. 

2. Defining an architectural component containing 
user-developed code that is able to 
compensate for differences in instrument 
behavior. 

3. Supporting manual and automatic resource 
allocation. 

4. Supporting automatic switching. 

The Signal Interface standard provides portability 
of Signal Components among different test 
environments by: 

1. Supporting the use of Signal Components in 
both signal-based and instrument-based test 
systems. Consequently, the Signal Com-
ponents must be able to operate independently 
of any resource allocation or automatic 
switching services. 

2. Supporting the use of Signal Components from 
multiple programming languages and deve-
lopment environments, including the ATLAS 
language, as well as all languages and 
environments supporting COM. The standard 
should also provide support for the emerging 
ATLAS 2000 standard, which is based on COM 
and general-purpose programming languages 
[4]. 

3. Not enforcing the use of a specific instrument 
control method. Signal Components may use 
IVI Drivers, VXIplug&play drivers, string 
commands or any other approach. 

4. Supporting a business model that stimulates 
the development of value-added components. 



Requirements for Signal Operations 

As indicated before, the Signal Interface 
contains methods for implementing basic signal 
operations, as defined in the signal-based 
testing paradigm. Different sets of methods are 
generally required for different signal roles.  

To cover commonly required testing 
functionality, the standard must support the 
signal roles of source, sensor and load. 
Additional signal roles may be needed for timing 
& synchronization, as well as for digital and bus 
testing. Because each role implies slightly 
different operations, distinct signal role-specific 
interfaces will be defined. 

The Signal Interfaces must be signal-type 
independent. For example, the same set of 
interface methods should be able to handle the 
sensing of an AC Signal, a DC Signal or a 
Temperature signal. This greatly simplifies the 
standardization process; instead of specifying 
different interfaces for tenths of signal types, 
only a few specifications are needed for the 
different signal roles. Moreover, the above 
approach allows the delegation of signal type 
definition to other standards. This idea will be 
expanded in a subsequent section. 

Requirements for Device Description 

As shown before, the resource allocation 
functionality requires the ATS to support the 
description of signal capabilities for the 
available devices (i.e., signal roles and types; 
range, resolution and precision for signal 
parameters). In the following, the term “device” 
will be used for any hardware, software or 
combined asset able to provide signal 
generation or measurement functionality. 

Since Signal Components may implement signal 
processing functionality, the signal capabilities 
are in general provided by the instrument-Signal 
Component ensemble. Moreover, these 
capabilities are guaranteed by the Signal 
Component vendor. Consequently, from both 
functional and business model standpoints the 
specification of capabilities belongs together 
with the Signal Component. To support this 
approach, the Signal Interface standard must 
specify a mechanism for the formal 
specification of device capabilities.  

The standardization of device capability description 
includes the following aspects: 

1. Storage and access to device capability 
information. The capability information must 
be stored persistently in a way that allows its 
distribution along with the Signal Component 
and preserves a permanent association with the 
Signal Component when this component is 
installed. The capability information is used by 
the ATS designer when selecting instruments 
and by the ATS software when performing 
resource allocation. Consequently, both human 
readability and programmatic access are 
required. 

2. Capability modeling. The modeling of signal 
capabilities is a non-trivial issue, due to the 
complex ways in which signal functionality may 
be provided by instrument subsystems. This 
issue is detailed in the following subsection of 
the paper. Capability modeling is addressed by 
the TEDL standard. Because this standard 
references the ATLAS language, its use would 
contradict the requirement of a language-
independent Signal Interface standard. 
Consequently, the development of a Signal 
Interface standard appears to require the 
design of a capability model, possibly based on 
TEDL. 

Other Functional Requirements 

The requirements presented below allow the Signal 
Interface to support testing functionality that is 
commonly required in applications: 

1. The standard must support flexible signal 
implementations, as follows: 

1.1. Devices implemented by hardware (i.e., 
instruments), software or a software-
hardware combination. 

1.2. Multi-channel instruments, where channels 
are able to concurrently measure and 
generate signals. 

1.3. Measurement or generation of a single 
signal using multiple instruments and/or 
instrument subsystems.  

1.4. Multiple concurrent functionalities provided 
by a single device subsystem (e.g., a 
power supply channel that is able to 



generate voltage and current and to 
measure current). 

2. The standard must support signal timing and 
synchronization, including the following 
capabilities: measurement of time intervals; 
synchronization of signal operations with 
events in other signals, with time and as 
simultaneity of signal operations. The 
standard must allow both hardware and 
software implementations for timing and 
synchronization. The implementation 
approach should be transparent to test 
procedures. 

3. The standard must support digital testing 
and bus testing. 

4. The Signal Components must be able to 
operate in simulation mode. 

Standardization Issues for the IVI-
MSS Signal Interface  

To provide portability and reuse for Signal 
Components, both component developers and 
component users are required to use consistent 
signal type information. This information refers 
to signal type names and signal parameters, in 
turn characterized by name, data type and 
physical significance. 

The Signal Interface standard will not attempt to 
specify signal types. This endeavor is 
considered outside the scope of the IVI 
Foundation, which is primarily oriented towards 
instrument control.  

Definitions for signal types are currently 
available in ATLAS standards. A novel approach 
that provides increased extensibility through the 
use of the Signal and Method Modeling 
Language (SMML) is currently pursued by the 
IEEE SCC20 Test Description Subcommittee, as 
a part of the standardization process for the 
ATLAS 2000 language [4]. 

The Signal Interface standard may specify a 
formal mechanism for deriving signal type 
information from the above standards. 

Integration of Signal Components in 
Automatic Test Systems 

Signal Components deliver their full potential in 
signal-based ATSs, in conjunction with automated 
resource allocation and automatic switching. 
Although currently available through ATLAS, 
signal-based testing is not restricted to ATLAS. As 
shown by recent prototyping work [2] [10], 
signal-based testing may be implemented using a 
general-purpose object-oriented programming 
language together with a signal library, containing 
classes or components corresponding to specific 
signal types. The component library approach is 
also embraced by the ATLAS 2000 standard [4]. 

Instrument-based ATSs are also expected to 
benefit from the use of Signal Components. 
Besides the inherent advantages of IVI-MSS, this 
approach offers a very simple, capable and generic 
software interface. Moreover, the availability of a 
formal description for signal capabilities simplifies 
the selection of instruments.  

The Signal Interface offers a natural programmatic 
gateway to synthetic instruments, since a unique 
Signal Component is able to provide access to the 
entire functionality of the instrument, by supporting 
all the signal types that may be measured and 
generated by the hardware.  

The Signal Interface represents a possible 
implementation for the Resource Adapter Interface 
defined in the DoD JTA [3]. 

Business Model  

The significant amount of development work 
required for Signal Components will probably rule 
out their free distribution by instrument vendors, as 
is the case with instrument drivers. Solution 
providers will then develop and sell Signal 
Components, as value-added software. 

The business model promoted by IVI-MSS assigns 
clear responsibilities for development, testing and 
verification. The developers of IVI-MSS Com-
ponents are required to guarantee their behavior 
and performance. The Signal Interface standard 
supports this approach by specifying the interface 
semantics and by requiring a formal description of 
device capabilities.  

The users of Signal Components (end users or 
system integrators) will be able to build test 



systems by selecting instruments for which 
Signal Components are available and whose 
capabilities match TPS requirements. In 
signal-based ATSs, the above matching is 
verified automatically. 

When instruments are replaced, the expertise of 
the original Signal Component developer is no 
longer a critical issue, because the Signal 
Interface semantics are standardized and the 
capabilities of the original Signal Components 
are formally described. These specifications 
allow a different solution provider to develop 
Signal Components for the new instruments and 
to certify their performance. This certification 
along with automatic resource allocation 
guarantees identical test results. 

Because Signal Components are instrument-
specific, the Signal Interface standard is able to 
generate a market with a significant potential. 
With new generations of instruments emerging, 
new Signal Components need to be developed 
permanently, for both for new applications and 
for replacement purposes. 

The business model described above is 
currently operational for signal-based ATSs 
used in military, aviation, nuclear plant and 
transportation applications. The standardization 
of the Signal Interface is expected to support 
solution providers by allowing them to deliver 
Signal Components to multiple end-users. This, 
in turn, is expected to stimulate competition and 
increase quality. 

Conclusion 

As demonstrated by the comparative analysis of 
existing solutions, different technologies provide 
different degrees of interchangeability. 
Because higher interchangeability generally 
comes with a higher cost, different categories of 
users are interested in different 
interchangeability levels. In application domains 
where the UUT lifetime covers several 
generations of test equipment, “robust” 
interchangeability is required. This feature 
allows instruments to be replaced without 
changes in the test procedure code or the fixture 
hardware, while identical test results may be 
guaranteed. 

The standardization of a Signal Interface for 
IVI-MSS Components is able to provide such 

“robust” interchangeability, along with portability 
between different test environments. Signal 
Components may be used in both signal-based and 
instrument-based test systems. They are able to 
support a new generation of signal-based ATSs 
using general-purpose programming languages. 

The design of a capable Signal Interface presents 
several challenges. The first one concerns the 
device capability model, which must support a 
flexible assignment of signal functionality to 
instrument subsystems. Another design problem is 
the support for hardware and software signal timing 
and synchronization that is transparent to the test 
procedure. A third issue concerns the transmission 
of signal parameters in a generic, signal 
type-independent format.  

The support provided by the IVI-MSS framework 
and the IVI Common Components along with the 
experience accumulated by signal-based ATS 
designers have the potential to create a solution 
that supports the functional requirements for a large 
class of applications, while using state-of-the-art 
software technologies. 

Glossary 

ATS - Automatic Test System 

COTS - Commercial Off The Shelf  

Device - In the present paper, any hardware, 
software or combined asset able to provide signal 
generation or measurement functionality. 

Instrument Interchangeability - The ability to 
replace a given instrument with an alternative 
instrument of sufficient capability, but of a different 
model, class, design or manufacturer. 

IV&V - Independent Validation and Verification 

IVI-MSS Aggregation Component - An IVI COM 
Component that aggregates the functionality of 
multiple instruments. 

IVI-MSS Measurement and Stimulus Subsystem 
- An IVI COM Component that presents its API to 
application programmers and may aggregate the 
functionality of multiple instruments. 

IVI-MSS Role Component - An IVI COM 
Component that follows the ownership rules 
specified for the IVI-MSS “role” interfaces. 



“Robust” Instrument Interchangeability - The 
ability to replace instruments without changing 
the TPSs, while the test results are guaranteed 
to remain identical. 

SCPI - Standard Commands for Programmable 
Instrumentation 

Signal Component - IVI-MSS Component with 
a Signal Interface 

 “Signal Driver” - In the present paper, an 
instrument-specific software module with a 
signal interface; the term is used for vendor-
specific ATS implementations; the equivalent 
term used within the IVI-MSS framework is 
“Signal Component” 

Signal Interface - IVI-MSS “role” interface with 
standardized semantics, implementing the basic 
signal operations as defined by the signal-based 
testing paradigm 

Signal Parameter - An attribute of the signal 
indicating the value corresponding to a 
characteristic of the physical signal 

Signal Role - An attribute of the signal 
specifying the type of operation it performs on 
the (e.g. source, sensor, load). 

Signal Type - An attribute of the signal 
specifying the type of physical signal it models 
(e.g. AC Signal, DC Signal, Temperature, Time, 
etc.). 

TEDL - Test Equipment Description Language 

TPS - Test Program Set. Contains the test 
procedures and the fixture hardware required to 
test a given UUT. 

UUT - Unit Under Test 
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