
THE ROLE OF A SIGNAL INTERFACE IN SUPPORTING
INSTRUMENT INTERCHANGEABILITY

Narayanan Ramachandran

TYX Corporation

1910 Association Drive

Suite 200

Reston, VA 20190

(703) 264-1080

nr@tyx.com

Ion A. Neag

TYX Corporation

1910 Association Drive

Suite 200

Reston, VA 20190

(703) 264-1080

ion@tyx.com

Roger P. Oblad

Electronic Products and

Solutions Group

Agilent Technologies

1400 Fountaingrove Parkway

Santa Rosa, CA 95403 USA

(707) 577-3466

Roger_Oblad@agilent.com

David F. Tyler

TYX Corporation

1910 Association Drive

Suite 200

Reston, VA 20190

(315) 336-6579

dtyler@tyx.com

Abstract – This paper investigates the
principles of instrument interchangeability in
Automatic Test Systems by identifying the
effects of instrument replacement and by
analyzing the existing solutions for interchan-
geability problems. The “robust” instrument
interchangeability provided by the IVI-MSS
approach is presented in detail. The solution
proposed in the paper consists of the
standardization of a Signal Interface as
semantic contents for IVI-MSS interfaces.
Besides the inherent advantages of the IVI-
MSS architecture, this approach provides
portability of components among different
testing environments. The functional
requirements, integration issues and
associated business model for the proposed
solution are analyzed.

Introduction

In the present paper, “instrument interchan-
geability” is understood as the ability to replace a
given instrument with an alternative instrument of
sufficient capability, but of a different model, class,
design or manufacturer.

Instrument interchangeability is a critical supporta-
bility issue in application fields such as avionics,
nuclear power plants, transportation and weapon
systems, where the Units Under Test (UUTs) and
their associated Test Program Sets (TPSs) have
operational lifetimes covering several generations
of test instrumentation. As the inventory of
existing Automatic Test Systems (ATSs) ages,
without the prospect of many newer systems
becoming operational soon, maintenance
organizations face the issue of ATSs approaching
obsolescence. Typically, three solutions are
considered:

1. Total replacement with new Commercial Off
The Shelf (COTS) ATSs, requiring the
redevelopment of all test programs and their
associated documentation.

2. Updating the existing ATS's computer and
instruments and re-hosting the legacy TPSs to
run on the new computer's operating system
and with the new instruments.

3. Migrating existing TPSs to newer ATE
systems with the same or greater capabilities,

thus reducing the multiplicity of ATSs in the
organization.

The development of new TPSs represents a large
investment, the cost of a complete TPS (with
interfacing devices and documentation) ranging
typically from $80,000 to $250,000.

The re-hosting of legacy TPSs in order to support
new instruments is also very expensive and
sometimes logistically impossible, due to the lack
of UUT data, software development support or
programming expertise for the original
development language. Moreover, TPS changes
require a new Independent Validation and
Verification (IV&V) process, which is expensive
and time consuming [10].

Consequently, the replacement of instruments
must be possible without changing the TPSs,
while the test results are guaranteed to remain
identical. In the following, this feature will be
called “robust interchangeability” [9].

Principles of Instrument
Interchangeability

ATS Architecture

The following analysis of interchangeability
principles is based on a generic Automatic Test
System (ATS) architecture, derived from the
Automatic Test Systems Subdomain Annex of the
DoD Joint Technical Architecture (JTA) [3] (Figure
1). The Resource Adapter Interface component
defined in [3] was omitted from the picture
because it is not supported by standards currently
in use. The functional requirements assigned to
this component by the JTA will be analyzed in the
next sections of the paper.

Instrument-based TPSs perform the direct control
of instruments through the following methods:

1. Sending string commands through the Bus
Driver or the Instrument Communication
Manager (I/O Library).

2. Calling functions of Instrument Drivers.

Bus Drivers

Instrument

Comm.

Manager

Bus Drivers

Test

Procedures

Run-Time

Services

Instruments

Instrument

Control

Buses

Switching

Matrix

Receiver

Fixture

UUT

software interfaces

hardware and electrical

interfaces

Figure 1. Generic ATS Architecture

For signal-based TPSs, the control of instruments
is performed by the Run-Time Services of the
ATS, also using one of the above methods.

Effects of Instrument Replacement

As visible in the generic ATS architecture, the
replacement of an instrument (along with its
driver, if applicable) may involve changes at the
following interfaces of the ATS architecture:

1. Software interfaces between Test Procedures
and the Bus Drivers:

1.1. The new instrument uses a different
control method (string commands vs.
driver calls).

1.2. Both instruments are controlled through
drivers, but the new driver provides
different functions, because the new
instrument is of a different model or
belongs to a different class.

1.3. Both instruments are controlled through
string commands, but the new instrument
has a different command set, because it
is of a different model or belongs to a
different class.

2. Hardware interfaces between the Bus Driver
and the Instrument; the new instrument uses
a different Instrument Control Bus.

3. Electrical interfaces between the Instrument
and the UUT; the new instrument has
differently organized ports (e.g. a different
number of outputs).

The above problems become more complex when
multiple instruments are involved in the
replacement (for instance, when several
instruments are replaced by a unique new
instrument).

An additional interchangeability problem, often
overlooked, is the behavior of the instrument (or
the instrument-driver subsystem, if applicable).
The following situations are identified:

1. The new instrument provides a different
answer, which may consist of different
physical signals generated in response to the
same commands or driver calls, or different
measurement results for identical physical

signals. This may be due to range, resolution
or precision differences that are not properly
taken into account when planning the
replacement, or to more subtle causes such
as different methods and algorithms
implemented in drivers or the instrument
firmware [9].

2. The new instrument has a different state
behavior. The “state” of an instrument is
characterized by a set of attributes (settings)
such as ranges, operational modes, etc. For
different instruments, the state may have
different evolutions in response to identical
sequences of commands or driver calls,
starting from the Reset or Power-on state. For
example, the attributes may have different
values after Reset or Power-on. Calling a
function or changing an attribute may affect
the other attributes differently, for different
instruments.

In addition, the replacement of an instrument may
require a new calibration of the signal paths that
include the instrument and its connection cables.

Existing Solutions for the
Interchangeability Problems

The interchangeability problems described before
are addressed by several families of standards
developed over the years. The benefits and
limitations of these standards will be summarized
in the following.

IEEE-488

IEEE-488 is an Instrument Control Bus standard,
primarily addressing the hardware interface
between the Bus Driver and the Instrument. The
IEEE-488.2 standard addresses the software
interface between Test Procedures and Bus
Drivers for command-based instruments, by
specifying a small set of common commands and
protocols. This level of standardization insures
consistency in usage, but does not provide a
common semantic for instrument control (i.e.,
identical commands for the same functions). In
consequence, although TPS changes are always
required when instruments are replaced, this
operation is simplified to some extent.

SCPI

The Standard Commands for Programmable
Instrumentation (SCPI) standard addresses the
software interface between Test Procedures and
Bus Drivers for command-based instruments, by
specifying common sets of commands for diverse
classes of instruments. The level of
interchangeability provided by SCPI is limited by
the need of instrument vendors to extend the
command set in order to expose instrument-
specific functionality [9]. This means that any use
of instrument-specific functionality may require
TPS changes when the instrument is replaced,
thus compromising the interchangeability.
Additionally, SCPI does not support
interchangeability solutions involving multiple
instruments.

VXIplug&play

The VXIplug&play standard addresses the
software interface between Test Procedures and
Bus Drivers for driver-based instrument control by
specifying a small set of common functions in the
driver’s Application Programming Interface (API).
Similar to IEEE-488.2, this offers consistency in
usage but does not provide common semantics.

IVI Drivers

The IVI Foundation [7] is currently developing a
set of Class Driver standards. These standards
address the software interface between Test
Procedures and Bus Drivers for driver-based
instrument control by specifying common driver
APIs for diverse classes of instruments. The
interoperability of IVI Drivers from different
vendors is supported by a standardized
architecture and set of standardized IVI Common
Components. IVI Drivers will be available with
COM interfaces.

The interchangeability provided by IVI Class
Drivers is limited by the following factors:

1. The class standards deal with the inherent
differences in instrument capabilities by
defining “extension groups”, which support the
capabilities provided by a limited, but
significant, number of existing instrument
models. This approach is expected to cover
about 80% of the existing instrument models.
Consequently, the access to instrument-spe-
cific functionality still requires vendor-specific

extensions to driver APIs, in the form of
“specific driver interfaces”. The direct use of
instrument-specific functions in the TPS
code compromises interchangeability.

2. The attribute model defined by the class
standards does not cover the interaction of
attributes and the effects of function calls on
these attributes. Consequently, the
interchangeability may be compromised by
differences in instrument state behavior.

3. The class standards do not address the
problem of different answer, as previously
defined in the paper.

4. Because the standardized interfaces are
instrument-class specific, the class standards
do not support replacement with instruments
from a different class and multi-instrument
replacement solutions.

In conclusion, although an important step forward
in providing interchangeability for driver-controlled
instruments, the IVI Class Driver standards do not
provide “robust” interchangeability, as defined in
the Introduction of the present paper. When
instruments are replaced, the use of IVI Class
Driver guarantees (with some limitations) the
execution of TPSs, but does not guarantee
identical test results.

Role of IVI-MSS in Providing
Instrument Interchangeability

The IVI-MSS (Measurement and Stimulus
Subsystem) standard is based on the
“Measurement Subsystem Architecture”
developed by the Hewlett-Packard Company [8].
This architecture design was offered to the
industry [1] and later included under the
sponsorship of the IVI Foundation [9]. This has
opened the way for unification of concepts and
architecture, extending the range of
interchangeability solutions offered by the IVI
Foundation.

Objectives

The IVI-MSS standard addresses most of the
interchangeability problems outlined before,
according to the following objectives [9]:

1. Allow replacement with instruments from a
different class.

2. Support interchangeable multi-instrument
measurement and stimulus solutions.

3. Provide a place for instrument-specific code
that compensates for instrument peculiarities
that produce different answers.

4. Promote a business model that requires the
vendor to guarantee the same answer when
an instrument is replaced.

5. Support software reuse for complex
measurement and stimulus solutions.

Architecture

While interchangeability problems involving
interface incompatibilities may be solved by
standardizing the syntax and semantics of these
interfaces, the problems caused by differences in

instrument behavior require an architectural
solution.

The IVI-MSS standard defines an architecture
with additional layers of COM components
between the TPS and the instruments (Figure 2).

The Role Control Modules (RCMs) are
instrument-specific components that provide a
place for code that compensates for differences in
instrument behavior. The interfaces of these
components implement an IVI-MSS “role”, which
means they have rigid semantics and are “owned”
by the client (e.g., the developer of the
Aggregation Component).

The Measurement and Stimulus Subsystems
(MSSs) are components that interact with more
than one RCM to implement multi-instrument
measurement and stimulus solutions. They may
also expose “role” interfaces.

Instrument Instrument Instrument

IVI

Driver

IVI

Driver

IVI-MSS

Role

Component

IVI-MSS

Role

Component

IVI-MSS

Role

Component

IVI-MSS Aggregation Component

IVI-MSS Role

Component

End User

Figure 2. IVI-MSS Architecture

All IVI-MSS Components, as well as the IVI
Drivers, use the services of IVI Common
Components:

1. The IVI Factory, which instantiates the
components.

2. The IVI Config Store, which provides access
to configuration information defining the
hierarchy of components.

3. The IVI Event server, which allows
components to communicate through events.

The above architecture supports complex ATS
implementations, potentially combining IVI-MSS
components, IVI Class Drivers, VXIplug&play
drivers and direct instrument control [9]. It also
supports signal-based ATS architectures, as
described in the following.

Interface Ownership

As specified above, “role” interfaces are “owned”
by the client. This means that the organization
developing Test Procedures or Measurement and
Stimulus Subsystems using RCMs specifies the
contents and the semantics of RCM interfaces.
RCM developers are responsible for implementing
and guaranteeing the specified behavior.

Because “role” interfaces are not required to
expose all the functionality of the instrument, they
are less complex than the interfaces of IVI
Drivers. This simplifies specification and
verification of functionality, reducing the cost of
initial development and the costs incurred by
subsequent instrument replacement operations
[9].

In conclusion, IVI-MSS provides robust instrument
interchangeability by defining an architecture and
specifying ownership rules for the semantic
interfaces. The specification of semantic contents
for these interfaces is outside the scope of IVI-
MSS. The reuse of IVI-MSS Components from
different solution providers among different test
environments requires the standardization of
interface semantics. Such standards may be

application domain-specific, for instance
dedicated to RF measurement. A domain-
independent solution based on the signal-based
testing paradigm is proposed in the following.

Role of Signal-Based Testing in
Providing Instrument
Interchangeability

The Signal-Based Testing Paradigm

Within the current test software technology, test
procedures may be developed using one of the
following approaches (“testing paradigms”):

1. Instrument-based testing. Test procedures
specify the behavior of instruments through
instrument-specific control methods such as
string commands or driver calls. The
connection of instrument ports to the UUT
pins is controlled by specifying in the test
procedures the behavior of the Switching
Matrix, through device-specific control
methods.

2. Signal-based testing. Test procedures
specify the desired behavior to be obtained at
the pins of the UUT, in terms of signals to be
applied and measured. The selection of
appropriate instruments may be performed
automatically by the development
environment and/or the run-time environment,
through automatic resource allocation. The
behavior of the Switching Matrix is determined
automatically by the development
environment and/or the run-time environment,
through automatic switching.

Two code samples included below illustrate the
implementation of the same signal generation
operation using both testing paradigms. The
generated signal is sinusoidal, with 1V amplitude
and 100kHz frequency, and must be applied at

the UUT pins labeled J1-1 and J1-2. The ATS

hardware (Figure 3) consists of a function
generator, the Switching Matrix and the Receiver
(R), while the TPS includes Test Procedures and
the Fixture (F).

InstrX SwitchX R F UUT

InstrX

Driver

SwitchX

Driver

Figure 3. Example of ATS Hardware

The following code fragment is extracted from an
instrument-based test procedure that controls the
function generator and the switch through IVI
Drivers:

IviFgen_init(“GPIB:22:INSTR”,

 VI_TRUE, VI_TRUE, &viFgen1);

IviFgen_ConfigureStandardWaveform(

 viFgen1, “CH1”,

 IVIFGEN_VAL_WFM_SINE,

 1, 0, 100E3, 0)

IviSwtch_init(“GPIB:17:INSTR”,

 VI_TRUE, VI_TRUE, &viSwtch1);

IviSwtch_Connect(viSwtch1,

 “IX-HI”, “P10”)

IviSwtch_Connect(viSwtch1,

 “IX-LO”, “P11”)

IviFgen_InitiateGeneration(viFgen1)

IviFgen_EnableOutput(viFgen1)

It may be observed that the above code contains
references to the instrument’s I/O address, to an
instrument channel and to instrument ports. The
driver calls are instrument-class specific and the
function
IviFgen_ConfigureStandardWaveform()

belongs to an extension group of the “IVI function
generator” class. All the above elements limit
interchangeability.

The following ATLAS code implements equivalent
functionality in a signal-based test procedure:

REQUIRE, 'AC_SIG_GEN',

 SOURCE, AC SIGNAL,

 CONTROL,

 VOLTAGE RANGE 0V TO 2V BY 1MV,

 FREQ RANGE 10HZ TO 1MHZ

 ERRLMT +-0.1PC,

 CNX HI J1-1 LO J1-2 $

APPLY, AC SIGNAL

 USING 'AC_SIG_GEN',

 VOLTAGE 1.0V,

 FREQ 100.0KHZ,

 CNX HI J1-1 LO J1-2 $

The first statement describes the requirements for
a signal, indicating the following:

1. signal role (SOURCE)

2. signal type (AC SIGNAL)

3. minimum range, resolution (BY keyword) and

precision (ERRLMT keyword) for signal

parameters Voltage and Frequency

The second statement specifies a signal
generation operation, indicating the values of

signal parameters and the UUT pins (J1-1, J1-1)

where the signal ports (HI, LO) must be applied.

To support signal allocation and automatic
switching, signal-based ATSs must contain
information about the capabilities and the
connectivity of Instruments, Switching Matrix and
Fixture (Figure 1). This information is typically
provided in text files, using a description
language. The standardization of this language is
addressed by the IEEE Standard for Test
Equipment Description Language (TEDL) [5].

For example, an ATS including an instrument that
may be allocated to the signal from the above
ATLAS code may contain the description
presented in the following, expressed in a
TEDL-like language.

The instrument description shown below
specifies the following: signal role and signal type;
signal capabilities, in terms of range, resolution
and precision for signal parameters; signal

connectivity, in terms of instrument ports (IX_HI,

IX_LO) where the signal ports (HI, LO) are

applied.

DEVICE_MODEL InstrX

 FUNCTION SOURCE

 NOUN AC_SIGNAL

 SIG_CHAR

 VOLTAGE RANGE 0V TO 5V

 BY 0.1MV

 FREQ RANGE 1HZ TO 10MHZ

 ERRLMT +-0.05PC

 AT HI IX_HI LO IX_LO

END DEVICE_MODEL InstrX $

The simplified Switching Matrix description
presented below specifies the signal paths that
may be closed by the Switching Matrix between
the instrument ports and the pins of the Receiver-

Fixture interface (P120, P11).

SWITCH_MODEL SwitchX

 PATH p1 CONNECTS IX_HI TO P10 $

 PATH p2 CONNECTS IX_LO TO P11 $

END SWITCH_MODEL SwitchX

The simplified Fixture description presented
below specifies a set of hardwired connections
between the pins of the Receiver-Fixture interface

and the pins of the UUT (J1-1, J1-2).

ADAPTATION_MODEL Ita1

 UUT Uut1

 PATH p1 CONNECTS P10 TO J1-1 $

 PATH p2 CONNECTS P11 TO J1-2 $

END ADAPTATION_MODEL Ita1

The capabilities of the instrument InstrX satisfy

the requirements specified in the ATLAS code
from the previous example. Moreover, the
Switching Matrix is able to provide all the required
signal paths between signal ports and UUT pins.
Consequently, this instrument may be allocated to
the ATLAS signal.

Because they do not specify instrument control
operations and do not contain references to
instrument ports, signal-based test procedures are
inherently instrument-independent. The following
specific interchangeability benefits may be
identified:

1. Because test procedures do not specify
instrument control operations, changes in
software interfaces between the Test
Procedures and the Bus Drivers and in the
hardware interface between the Bus Driver
and the Instrument do not impact TPS
operation (Figure 1). When instruments are
replaced, the signal-based test development
and execution environment is able to
compensate for differences in the above
interfaces.

2. Because test procedures do not contain
references to instrument ports, changes in the
electrical interfaces between Instruments
and the UUT (Figure 1) do not impact TPS
operation. Connectivity differences in the
above interfaces are compensated by
automatic switching. Moreover, automated
switching enables the automatic calibration
of signal paths, if adequate capability
information is provided for the Switching
Matrix and the Fixture.

3. The differences in instrument behavior that
may be expressed in terms of range,
resolution and precision capabilities are
automatically taken into account by automatic
resource allocation. Only instruments that
satisfy the requirements expressed in the test
procedure code are used at run-time.

Instrument Control in Signal-Based ATSs

Currently the signal-based testing paradigm is
available through the ATLAS language [6].
Originally developed as a language for specifying
test requirements for human readers, ATLAS has
evolved into a programming language. Because
the ATLAS standard does not specify how the
actual control of instruments is implemented,
vendor-specific solutions were developed. Due to
the limitations of some of these solutions, existing
ATLAS TPSs often contain instrument control
operations, implemented by Non-Atlas Modules
(NAMs). This approach compromises the
instrument independence provided by the
language.

To avoid the above problem, signal-based ATSs
must include code modules (called in the following
“signal drivers”) that implement the control of
instruments through string command or driver
calls. The “signal drivers” are instrument-specific,
being replaced along with the instrument. To

support the flexible allocation of instruments to
signals, the “signal drivers” must have software
interfaces that are both instrument
model-independent and instrument-class
independent. This is achieved by implementing
the basic signal operations corresponding to
ATLAS single-action verbs, as exemplified below:

1. For the “source” and “load” signal roles:

Connect, Setup, Change, Close,

EnableEvent, DisableEvent, Open,

Reset, Disconnect.

2. For the “sensor” signal role: Setup,

Connect, Change, Arm, EnableEvent,

DisableEvent, Fetch, Disconnect,

Reset.

Some of the above considerations also apply for
the control of the Switching Matrix, which should
be implemented by device-specific “switching
drivers”. The standardization of an interface for
“switching drivers” is outside the scope of the
present paper.

Architecture of Signal-Based ATSs

Signal-based ATS architectures (Figure 4)
including the code modules introduced above are
currently implemented in ATLAS products such as
TYX PAWS. Similar architectures based on
general-purpose programming languages were
prototyped by the DoD joint service Automatic
Test Systems Research & Development
Integrated Product Team (ARI) [2] and TYX [10].

Figure 4. Signal-based ATS Architecture

The IVI-MSS Signal Interface

The lack of standardization for the interfaces of
“signal drivers” supported by vendor-specific
solutions limits their interoperability and their
portability among different testing environments.

The signal-based ATS architecture shown in Figure
4 is perfectly compatible with the IVI-MSS
architecture represented in Figure 2, if the “signal
drivers” are implemented as IVI-MSS Role
Components. Moreover, the use of IVI-MSS
Aggregation Components with a “role” interface

InstrX SwitchX R F UUT

InstrX

Driver

SwitchX

Driver

InstrX Signal

Driver

SwitchX

Switching

Driver

Run-Time

System

Test

Procedure

Device

Capability

Information

Fixture

Capability

Information

Switch

Capability

Information

may support multi-instrument signal measure-
ment and generation solutions.

Consequently, the standardization of a Signal
Interface for IVI-MSS Components allows the
development of ATSs that combine the benefits
of the IVI-MSS architecture and those provided
by the signal-based testing paradigm. This
combination is able to address all the effects of
instrument replacement previously identified in
the paper.

The IVI Foundation sponsors this approach
through a Signal Interface Working Group, with
the mission of “defining a standard specification
for IVI-MSS component interface semantics in
support of the signal-oriented description of
measurement and stimulus operations”.

As indicated before for IVI-MSS “role” interfaces,
the simplicity of the Signal Interface (i.e., the
low number of methods) simplifies performance
verification, reducing development and
maintenance costs. On the other hand, the
generality of the interface (i.e.,
instrument-independence and application
domain-independence) favors the reuse and
portability of components among test
environments from different vendors. The
simplicity and the generality do not compromise
the capability of the interface, understood as its
ability to satisfy functional requirements for
different types of testing (e.g., analog, digital,
bus testing) and different types of UUTs (e.g.,
RF, opto-electronic, electro-mechanical, etc.), in
test systems with different levels of complexity.
The above capability was demonstrated over the
years by the use of “signal drivers” in
vendor-specific ATS architectures integrated in a
large number of applications.

The unique combination of benefits enumerated
before derives from the use of the signal
abstraction, which is a very powerful and generic
way of specifying behavior in test systems.

Functional Requirements for the IVI-
MSS Signal Interface

This section presents the functional
requirements currently identified for the Signal
Interface design.

General Requirements

Signal Interfaces may be defined for IVI-MSS Role
Control Modules or, in the case of multi-instrument
solutions, for IVI-MSS Measurement and Stimulus
Subsystems. In the following, the IVI-MSS
Components with a Signal Interface will be called
“Signal Components”.

The Signal Interface standard must provide
“robust” instrument interchangeability by:

1. Defining an instrument model-independent and
instrument-class independent interface.

2. Defining an architectural component containing
user-developed code that is able to
compensate for differences in instrument
behavior.

3. Supporting manual and automatic resource
allocation.

4. Supporting automatic switching.

The Signal Interface standard provides portability
of Signal Components among different test
environments by:

1. Supporting the use of Signal Components in
both signal-based and instrument-based test
systems. Consequently, the Signal Com-
ponents must be able to operate independently
of any resource allocation or automatic
switching services.

2. Supporting the use of Signal Components from
multiple programming languages and deve-
lopment environments, including the ATLAS
language, as well as all languages and
environments supporting COM. The standard
should also provide support for the emerging
ATLAS 2000 standard, which is based on COM
and general-purpose programming languages
[4].

3. Not enforcing the use of a specific instrument
control method. Signal Components may use
IVI Drivers, VXIplug&play drivers, string
commands or any other approach.

4. Supporting a business model that stimulates
the development of value-added components.

Requirements for Signal Operations

As indicated before, the Signal Interface
contains methods for implementing basic signal
operations, as defined in the signal-based
testing paradigm. Different sets of methods are
generally required for different signal roles.

To cover commonly required testing
functionality, the standard must support the
signal roles of source, sensor and load.
Additional signal roles may be needed for timing
& synchronization, as well as for digital and bus
testing. Because each role implies slightly
different operations, distinct signal role-specific
interfaces will be defined.

The Signal Interfaces must be signal-type
independent. For example, the same set of
interface methods should be able to handle the
sensing of an AC Signal, a DC Signal or a
Temperature signal. This greatly simplifies the
standardization process; instead of specifying
different interfaces for tenths of signal types,
only a few specifications are needed for the
different signal roles. Moreover, the above
approach allows the delegation of signal type
definition to other standards. This idea will be
expanded in a subsequent section.

Requirements for Device Description

As shown before, the resource allocation
functionality requires the ATS to support the
description of signal capabilities for the
available devices (i.e., signal roles and types;
range, resolution and precision for signal
parameters). In the following, the term “device”
will be used for any hardware, software or
combined asset able to provide signal
generation or measurement functionality.

Since Signal Components may implement signal
processing functionality, the signal capabilities
are in general provided by the instrument-Signal
Component ensemble. Moreover, these
capabilities are guaranteed by the Signal
Component vendor. Consequently, from both
functional and business model standpoints the
specification of capabilities belongs together
with the Signal Component. To support this
approach, the Signal Interface standard must
specify a mechanism for the formal
specification of device capabilities.

The standardization of device capability description
includes the following aspects:

1. Storage and access to device capability
information. The capability information must
be stored persistently in a way that allows its
distribution along with the Signal Component
and preserves a permanent association with the
Signal Component when this component is
installed. The capability information is used by
the ATS designer when selecting instruments
and by the ATS software when performing
resource allocation. Consequently, both human
readability and programmatic access are
required.

2. Capability modeling. The modeling of signal
capabilities is a non-trivial issue, due to the
complex ways in which signal functionality may
be provided by instrument subsystems. This
issue is detailed in the following subsection of
the paper. Capability modeling is addressed by
the TEDL standard. Because this standard
references the ATLAS language, its use would
contradict the requirement of a language-
independent Signal Interface standard.
Consequently, the development of a Signal
Interface standard appears to require the
design of a capability model, possibly based on
TEDL.

Other Functional Requirements

The requirements presented below allow the Signal
Interface to support testing functionality that is
commonly required in applications:

1. The standard must support flexible signal
implementations, as follows:

1.1. Devices implemented by hardware (i.e.,
instruments), software or a software-
hardware combination.

1.2. Multi-channel instruments, where channels
are able to concurrently measure and
generate signals.

1.3. Measurement or generation of a single
signal using multiple instruments and/or
instrument subsystems.

1.4. Multiple concurrent functionalities provided
by a single device subsystem (e.g., a
power supply channel that is able to

generate voltage and current and to
measure current).

2. The standard must support signal timing and
synchronization, including the following
capabilities: measurement of time intervals;
synchronization of signal operations with
events in other signals, with time and as
simultaneity of signal operations. The
standard must allow both hardware and
software implementations for timing and
synchronization. The implementation
approach should be transparent to test
procedures.

3. The standard must support digital testing
and bus testing.

4. The Signal Components must be able to
operate in simulation mode.

Standardization Issues for the IVI-
MSS Signal Interface

To provide portability and reuse for Signal
Components, both component developers and
component users are required to use consistent
signal type information. This information refers
to signal type names and signal parameters, in
turn characterized by name, data type and
physical significance.

The Signal Interface standard will not attempt to
specify signal types. This endeavor is
considered outside the scope of the IVI
Foundation, which is primarily oriented towards
instrument control.

Definitions for signal types are currently
available in ATLAS standards. A novel approach
that provides increased extensibility through the
use of the Signal and Method Modeling
Language (SMML) is currently pursued by the
IEEE SCC20 Test Description Subcommittee, as
a part of the standardization process for the
ATLAS 2000 language [4].

The Signal Interface standard may specify a
formal mechanism for deriving signal type
information from the above standards.

Integration of Signal Components in
Automatic Test Systems

Signal Components deliver their full potential in
signal-based ATSs, in conjunction with automated
resource allocation and automatic switching.
Although currently available through ATLAS,
signal-based testing is not restricted to ATLAS. As
shown by recent prototyping work [2] [10],
signal-based testing may be implemented using a
general-purpose object-oriented programming
language together with a signal library, containing
classes or components corresponding to specific
signal types. The component library approach is
also embraced by the ATLAS 2000 standard [4].

Instrument-based ATSs are also expected to
benefit from the use of Signal Components.
Besides the inherent advantages of IVI-MSS, this
approach offers a very simple, capable and generic
software interface. Moreover, the availability of a
formal description for signal capabilities simplifies
the selection of instruments.

The Signal Interface offers a natural programmatic
gateway to synthetic instruments, since a unique
Signal Component is able to provide access to the
entire functionality of the instrument, by supporting
all the signal types that may be measured and
generated by the hardware.

The Signal Interface represents a possible
implementation for the Resource Adapter Interface
defined in the DoD JTA [3].

Business Model

The significant amount of development work
required for Signal Components will probably rule
out their free distribution by instrument vendors, as
is the case with instrument drivers. Solution
providers will then develop and sell Signal
Components, as value-added software.

The business model promoted by IVI-MSS assigns
clear responsibilities for development, testing and
verification. The developers of IVI-MSS Com-
ponents are required to guarantee their behavior
and performance. The Signal Interface standard
supports this approach by specifying the interface
semantics and by requiring a formal description of
device capabilities.

The users of Signal Components (end users or
system integrators) will be able to build test

systems by selecting instruments for which
Signal Components are available and whose
capabilities match TPS requirements. In
signal-based ATSs, the above matching is
verified automatically.

When instruments are replaced, the expertise of
the original Signal Component developer is no
longer a critical issue, because the Signal
Interface semantics are standardized and the
capabilities of the original Signal Components
are formally described. These specifications
allow a different solution provider to develop
Signal Components for the new instruments and
to certify their performance. This certification
along with automatic resource allocation
guarantees identical test results.

Because Signal Components are instrument-
specific, the Signal Interface standard is able to
generate a market with a significant potential.
With new generations of instruments emerging,
new Signal Components need to be developed
permanently, for both for new applications and
for replacement purposes.

The business model described above is
currently operational for signal-based ATSs
used in military, aviation, nuclear plant and
transportation applications. The standardization
of the Signal Interface is expected to support
solution providers by allowing them to deliver
Signal Components to multiple end-users. This,
in turn, is expected to stimulate competition and
increase quality.

Conclusion

As demonstrated by the comparative analysis of
existing solutions, different technologies provide
different degrees of interchangeability.
Because higher interchangeability generally
comes with a higher cost, different categories of
users are interested in different
interchangeability levels. In application domains
where the UUT lifetime covers several
generations of test equipment, “robust”
interchangeability is required. This feature
allows instruments to be replaced without
changes in the test procedure code or the fixture
hardware, while identical test results may be
guaranteed.

The standardization of a Signal Interface for
IVI-MSS Components is able to provide such

“robust” interchangeability, along with portability
between different test environments. Signal
Components may be used in both signal-based and
instrument-based test systems. They are able to
support a new generation of signal-based ATSs
using general-purpose programming languages.

The design of a capable Signal Interface presents
several challenges. The first one concerns the
device capability model, which must support a
flexible assignment of signal functionality to
instrument subsystems. Another design problem is
the support for hardware and software signal timing
and synchronization that is transparent to the test
procedure. A third issue concerns the transmission
of signal parameters in a generic, signal
type-independent format.

The support provided by the IVI-MSS framework
and the IVI Common Components along with the
experience accumulated by signal-based ATS
designers have the potential to create a solution
that supports the functional requirements for a large
class of applications, while using state-of-the-art
software technologies.

Glossary

ATS - Automatic Test System

COTS - Commercial Off The Shelf

Device - In the present paper, any hardware,
software or combined asset able to provide signal
generation or measurement functionality.

Instrument Interchangeability - The ability to
replace a given instrument with an alternative
instrument of sufficient capability, but of a different
model, class, design or manufacturer.

IV&V - Independent Validation and Verification

IVI-MSS Aggregation Component - An IVI COM
Component that aggregates the functionality of
multiple instruments.

IVI-MSS Measurement and Stimulus Subsystem
- An IVI COM Component that presents its API to
application programmers and may aggregate the
functionality of multiple instruments.

IVI-MSS Role Component - An IVI COM
Component that follows the ownership rules
specified for the IVI-MSS “role” interfaces.

“Robust” Instrument Interchangeability - The
ability to replace instruments without changing
the TPSs, while the test results are guaranteed
to remain identical.

SCPI - Standard Commands for Programmable
Instrumentation

Signal Component - IVI-MSS Component with
a Signal Interface

 “Signal Driver” - In the present paper, an
instrument-specific software module with a
signal interface; the term is used for vendor-
specific ATS implementations; the equivalent
term used within the IVI-MSS framework is
“Signal Component”

Signal Interface - IVI-MSS “role” interface with
standardized semantics, implementing the basic
signal operations as defined by the signal-based
testing paradigm

Signal Parameter - An attribute of the signal
indicating the value corresponding to a
characteristic of the physical signal

Signal Role - An attribute of the signal
specifying the type of operation it performs on
the (e.g. source, sensor, load).

Signal Type - An attribute of the signal
specifying the type of physical signal it models
(e.g. AC Signal, DC Signal, Temperature, Time,
etc.).

TEDL - Test Equipment Description Language

TPS - Test Program Set. Contains the test
procedures and the fixture hardware required to
test a given UUT.

UUT - Unit Under Test

References

[1] Barnholt, N., “Connecting You to the Future”,
Keynote address, AUTOTESTCON 1998,
http://www.tm.agilent.com/tmo/techinfo/English/
ned_autotestcon.html

[10] Tyler, D., “Java-Based Automated Test
Systems: Management Considerations for an
Open Architecture for Test”, Proc.

AUTOTESTCON, San Antonio, TX, 1999, pp. 699-
706

[2] Department of Defense, Automated Test System
Research and Development Integrated Product
Team (ARI), FY98 Status Report, 1998

[3] Department Of Defense, Joint Technical
Architecture, version 3.0, November 1999,
http://www-jta.itsi.disa.mil/

[4] IEEE SCC20 Test Description Subcommittee,
http://grouper.ieee.org/groups/
scc20/atlas/index.html

[5] IEEE Standard for Test Equipment Description
Language (TEDL), IEEE Std 993-1997

[6] Standard Test Language for All Systems -
Common/Abbreviated Test Language for All
Systems (ATLAS), IEEE Std 716-1995

[7] IVI Foundation, http://www.ivifoundation.org

[8] Oblad, R., “Applying New Software
Technologies to Solve Key System Integration
Issues”, Proc. AUTOTESTCON, Piscataway, NJ,
1997, pp. 181-189

[9] Oblad, R., “Achieving Robust Interchangeability
of Test Assets in ATE Systems”, Proc.
AUTOTESTCON, San Antonio, TX, 1999, pp. 687-
698

